dirgo
Project structure → clipboard → LLM
One command. Zero friction.
Stop manually describing your codebase to AI. One command copies your project structure, dependencies, and configs — ready to paste.
$ dirgo context
Project: node (npm) [typescript]
├── src/
│ ├── app/
│ ├── components/
│ ├── lib/
│ └── utils/
├── prisma/
├── package.json
└── tsconfig.json
Dependencies (8):
next: ^14.0.0
prisma: ^5.0.0
...
tsconfig.json:
target: ES2022
strict: true
[copied 892B · ~156 tokens]
AI can't see your file system
Every time you ask ChatGPT or Claude about your code, you waste time explaining your project structure. Even AI CLI agents still use tree or ls -R — burning tokens on noise. There's a better way.
| Method | Time | Friction |
|---|---|---|
| Screenshot + paste image | 30 sec | High (wastes tokens on pixels) |
| tree command + manual copy | 15 sec | Medium (includes node_modules, .git) |
| AI agents using tree/ls | 5-10 sec | Medium (extra context, no deps) |
| → dirgo | < 1 sec | None |
Built for the AI-first workflow
Instant Output
No spinners, no loading bars. Results stream the moment you press enter. Built for speed with Bun.
Auto Clipboard
Output copies automatically. Just Cmd+V into ChatGPT, Claude, or Cursor. Zero extra steps.
Token Aware
Every output shows estimated tokens. Know exactly how much context you're using before hitting limits.
Smart Detection
Auto-detects project type, package manager, monorepo structure, and extracts relevant configs.
Multiple Formats
ASCII tree (default), TOON notation, or JSON. Pick what works best for your LLM or documentation.
MCP Ready
Built-in Model Context Protocol server. Let AI agents query your project structure programmatically.
Real workflows, real examples
See exactly how dirgo fits into your AI-assisted development.
Onboarding to a New Codebase
Paste project structure into Claude or ChatGPT and ask "What does this project do?" Get instant architecture overview.
dirgo context Project: node (npm) [typescript] ├── src/ │ ├── api/ │ ├── components/ │ └── utils/ ├── package.json └── tsconfig.json Dependencies (12): react: ^18.2.0 next: ^14.0.0 ...
Debugging with AI
Show the AI exactly where files are located. No more "I can't see your project structure" responses.
dirgo --focus src/api └── src/
└── api/
├── routes/
│ ├── auth.ts
│ ├── users.ts
│ └── index.ts
├── middleware/
│ └── auth.ts
└── client.ts Documentation Generation
Generate README sections or architecture docs. The emoji mode makes it documentation-ready.
dirgo -e --depth 2 ├── 📁 src/ │ ├── 📁 components/ │ ├── 📁 hooks/ │ └── 📁 utils/ ├── 📁 tests/ ├── 📦 package.json ├── ⚙️ tsconfig.json └── 📚 README.md
Simple CLI, powerful output
Four commands. That's it.
dirgo Quick tree → copies to clipboard. The default for most tasks.
alias: dirgo tree
dirgo context Full LLM context: structure + dependencies + configs.
Best for onboarding AI to your project
dirgo deps Dependencies only. Quick way to show what you're working with.
Parsed from package.json, Cargo.toml, etc.
dirgo serve Start MCP server for AI agent integrations.
JSON-RPC over stdio
# All the options you might need
--format tree | toon | json
--depth <n> — limit depth
--emoji — add 📁 📄 icons
--focus <path> — expand only subtree
--no-copy — print only
--output <file> — write to file
--include-all — include .git, etc.
--dir <path> — target directory
Works with your stack
Parses project manifests to extract dependencies, configs, and workspace structure.
Node.js / TypeScript
package.json, tsconfig.json
Dependencies, scripts, TS compiler options, strict mode detection
Python
pyproject.toml, requirements.txt, Pipfile
Dependencies, dev dependencies, Python version constraints
Go
go.mod, go.work
Module path, Go version, direct and indirect dependencies
Rust
Cargo.toml
Dependencies, features, dev dependencies, workspace members
Monorepo Detection
Automatically detects and lists workspace packages:
Why your AI agent needs dirgo
Building AI-powered dev tools? Here's why dirgo should be in your stack.
Structured, Parseable Output
JSON format enables programmatic processing. No regex needed to extract file paths.
Token Efficient
TOON format uses ~30% fewer tokens than ASCII trees. Every token counts in context windows.
Consistent Interface
Same tool works across Node, Python, Go, Rust. One integration, all project types.
No Hallucination Risk
Real file system data, not guessed structure. Ground truth for accurate code generation.
Built-in MCP Server
Let AI agents query your project structure programmatically. No scraping, no parsing — just clean JSON-RPC.
dirgo_tree Get directory structure with optional depth, format, and emoji settings
{ "dir": ".", "depth": 2, "format": "tree" } dirgo_context Full project context: structure + dependencies + configs
{ "dir": "/path/to/project" } dirgo_deps Dependencies only, parsed from project manifest
{ "dir": "." } # Add to your MCP config (Claude, etc.)
{
"mcpServers": {
"dirgo": {
"command": "dirgo",
"args": ["serve"]
}
}
} # Example JSON-RPC request
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": {
"name": "dirgo_context",
"arguments": { "dir": "." }
}
} Pick your format
ASCII for humans, TOON for token efficiency, JSON for machines.
├── src/ │ ├── api/ │ └── utils/ ├── package.json └── README.md
src/ api/ utils/ package.json README.md
{
"structure": [
{"path": "src", ...},
{"path": "src/api", ...}
]
} Install in seconds
# with npm
$ npm install -g @fyzanshaik/dirgo
# with bun (faster)
$ bun add -g @fyzanshaik/dirgo
# then just run
$ dirgo
Works on macOS, Linux, and Windows. Requires Node.js 18+.
Your AI assistant
deserves context.
Stop wasting tokens explaining your codebase. Start shipping.
Install dirgo